
By V. Dokchitser, Sebastian Pancratz
Read or Download Algebraic Number Theory PDF
Similar algebraic geometry books
Quadratic and hermitian forms over rings
This ebook offers the idea of quadratic and hermitian kinds over earrings in a truly normal atmosphere. It avoids, so far as attainable, any limit at the attribute and takes complete good thing about the functorial homes of the idea. it isn't an encyclopedic survey. It stresses the algebraic elements of the speculation and avoids - is reasonably overlapping with different books on quadratic varieties (like these of Lam, Milnor-Husemöller and Scharlau).
Liaison, Schottky Problem and Invariant Theory: Remembering Federico Gaeta
This quantity is a homage to the reminiscence of the Spanish mathematician Federico Gaeta (1923-2007). except a historic presentation of his existence and interplay with the classical Italian college of algebraic geometry, the amount offers surveys and unique study papers at the arithmetic he studied.
Automorphisms in Birational and Affine Geometry: Levico Terme, Italy, October 2012
The focus of this quantity is at the challenge of describing the automorphism teams of affine and projective types, a classical topic in algebraic geometry the place, in either circumstances, the automorphism staff is usually countless dimensional. the gathering covers quite a lot of subject matters and is meant for researchers within the fields of classical algebraic geometry and birational geometry (Cremona teams) in addition to affine geometry with an emphasis on algebraic team activities and automorphism teams.
- Discrete Integrable Systems: QRT Maps and Elliptic Surfaces (Springer Monographs in Mathematics)
- Equidistribution in Number Theory, An Introduction (Nato Science Series II:)
- Schemas en Groupes. Seminaire de Geometrie Algebrique du Bois Marie 1962/64 (SGA 3): III: Structure des Schemas en Groupes Reductifs (Lecture Notes in Mathematics) (French Edition)
- Homotopy Invariant Algebraic Structures: A Conference in Honor of Mike Boardman : Ams Special Session on Homotopy Theory, January 1998, Baltimore, MD (Contemporary Mathematics)
- Algebraic geometry, 1st Edition
Additional info for Algebraic Number Theory
Example text
J j ■❢ ρ, I = 0 t❤❡♥ τi ❝❛♥ ❜❡ ❝❤♦s❡♥ t♦ ❜❡ ♥♦♥✲tr✐✈✐❛❧✳ Pr♦♦❢✳ ❙❧✐❣❤t❧② ♥♦♥✲tr✐✈✐❛❧ ❡①❡r❝✐s❡✳ ❚❤❡♦r❡♠ ✸✳✶✻ ✭❆rt✐♥✮✳ ▲❡t F/K ❜❡ ❛ ●❛❧♦✐s ❡①t❡♥s✐♦♥ ♦❢ ♥✉♠❜❡r ✜❡❧❞s ❛♥❞ ρ ❛ r❡♣r❡✲ s❡♥t❛t✐♦♥ ♦❢ Gal(F/K)✳ ❚❤❡♥ t❤❡r❡ ❡①✐sts n ≥ 1 s✉❝❤ t❤❛t L(ρ, s)n ❛❞♠✐ts ❛ ♠❡r♦♠♦r✲ ♣❤✐❝ ❝♦♥t✐♥✉❛t✐♦♥ t♦ C✱ ❛♥❛❧②t✐❝ ❛♥❞ ♥♦♥✲③❡r♦ ❛t s = 1 ✐❢ ρ, I = 0✳ Pr♦♦❢✳ Pr♦♣♦s✐t✐♦♥ ✸✳✶✺ ❛♥❞ ❆rt✐♥ ❋♦r♠❛❧✐s♠ r❡❞✉❝❡ t❤❡ ♣r♦❜❧❡♠ t♦ s❤♦✇✐♥❣ t❤❛t L(τ, s) ❤❛s ❛♥❛❧②t✐❝ ❝♦♥t✐♥✉❛t✐♦♥ t♦ C ✇❤❡♥ τ ✐s 1✲❞✐♠❡♥s✐♦♥❛❧✱ ❡①❝❡♣t ♣♦ss✐❜❧② ❛ ♣♦❧❡ ❛t s = 1 ✇❤❡♥ τ = I✳ ❚❤✐s ✐s tr✉❡ ❜② ❍❡❝❦❡✬s ❚❤❡♦r❡♠ ❛♥❞ t❤❡ ❢❛❝t t❤❛t ♦♥❧② ✜♥✐t❡❧② ♠❛♥② ♣r✐♠❡s r❛♠✐❢② ✐♥ ❛♥② ❡①t❡♥s✐♦♥ ♦❢ ♥✉♠❜❡r ✜❡❧❞s✱ ❛♥❞ L(τ, s) ✐s ♥♦♥✲③❡r♦ ❛t s = 1✳ ✸✸ ❈♦r♦❧❧❛r② ✸✳✶✼✳ ♥❡❛r s = 1✳ ■❢ ρ ✐s ✐rr❡❞✉❝✐❜❧❡ ❛♥❞ ♥♦♥✲tr✐✈✐❛❧ t❤❡♥ L(ρ, s) ✐s ❜♦✉♥❞❡❞ ❛♥❞ ♥♦♥✲③❡r♦ Pr♦♦❢✳ ❖❜s❡r✈❡ ✐❢ F/K ✐s ❝②❝❧✐❝ t❤❡♥ t❤✐s ✐s tr✉❡ ❜② ❚❤❡♦r❡♠ ✸✳✶✶✳ ❈♦♥❥❡❝t✉r❡✳ t♦ C✳ ■❢ ρ ✐s ✐rr❡❞✉❝✐❜❧❡ ❛♥❞ ♥♦♥✲tr✐✈✐❛❧ t❤❡♥ L(ρ, s) ❤❛s ❛♥❛❧②t✐❝ ❝♦♥t✐♥✉❛t✐♦♥ ❘❡♠❛r❦✳ ❚❤❡♦r❡♠ ✸✳✶✻ ✐♠♣❧✐❡s t❤❛t L(ρ, s)n ✐s ♠❡r♦♠♦r♣❤✐❝✳ ❆ t❤❡♦r❡♠ ♦❢ ❇r❛✉❡r st❛t❡s t❤❛t L(ρ, s) ✐s ♠❡r♦♠♦r♣❤✐❝✳ ✸✳✼ ❉❡✜♥✐t✐♦♥✳ ❉❡♥s✐t② ❚❤❡♦r❡♠s ▲❡t S ❜❡ ❛ s❡t ♦❢ ♣r✐♠❡ ♥✉♠❜❡rs✳ ❚❤❡♥ S ❤❛s ❉✐r✐❝❤❧❡t ❞❡♥s✐t② α ✐❢ 1 p∈S ps 1 log s−1 →α ❛s s → 1 ❢r♦♠ ❛❜♦✈❡ ✐♥ R✳ ❊①❛♠♣❧❡✳ ❛♥❞ Sa,N ❇② ❉✐r✐❝❤❧❡t✬s ❚❤❡♦r❡♠ ✭❚❤❡♦r❡♠ ✸✳✶✵✮✱ t❤❡ s❡t ♦❢ ❛❧❧ ♣r✐♠❡s ❤❛s ❞❡♥s✐t② 1 = {p : p ≡ a (mod N )} ❤❛s ❞❡♥s✐t② 1/φ(N ) ❢♦r a ❛♥❞ N ❝♦♣r✐♠❡✳ ◆♦t❛t✐♦♥✳ ❋♦r F/Q ●❛❧♦✐s ❛♥❞ P ✉♥r❛♠✐✜❡❞ ✐♥ F ✱ ✇r✐t❡ FrobP ∈ Gal(F/Q) ❢♦r t❤❡ ❋r♦❜❡♥✐✉s ❡❧❡♠❡♥t FrobQ/P ♦❢ s♦♠❡ Q ❛❜♦✈❡ P ✳ ◆♦t❡ t❤❛t FrobP ❧✐❡s ✐♥ ❛ ✇❡❧❧✲❞❡✜♥❡❞ ❝♦♥❥✉❣❛❝② ❝❧❛ss ♦❢ Gal(F/Q)✱ ❜❡❝❛✉s❡ FrobQ /P = x FrobQ/P x−1 ✇❤❡r❡ Q = xQ ❢♦r s♦♠❡ x ∈ Gal(F/Q)✳ ❊①❛♠♣❧❡✳ a t❤❡♥✱ ❢♦r p N ✱ Frob = F = Q(ζN ) ❛♥❞ σa ∈ Gal(F/Q) ✇✐t❤ σa (ζN ) = ζN P p σa ✐❢ ❛♥❞ ♦♥❧② ✐❢ p ≡ a (mod N )✱ ❜❡❝❛✉s❡ FrobP (ζN ) = ζN ✳ ❙♦ ❜② ❉✐r✐❝❤❧❡t✬s ❚❤❡♦r❡♠✱ t❤❡ s❡t SN,σ = {p ✉♥r❛♠✐✜❡❞ ✐♥ Q(ζN )/Q : Frobp = σ} ❤❛s ❉✐r✐❝❤❧❡t ❞❡♥s✐t② 1/φ(N ) = 1/|Gal Q(ζN )/Q | ❢♦r ❡✈❡r② σ ∈ Gal Q(ζN )/Q ✳ ❚❤❡♦r❡♠ ✸✳✶✽ ✭❈❤❡❜♦t❛r❡✈✬s ❉❡♥s✐t② ❚❤❡♦r❡♠✮✳ ▲❡t F/Q ❜❡ ❛ ✜♥✐t❡ ●❛❧♦✐s ❡①t❡♥s✐♦♥ ❛♥❞ C ❛ ❝♦♥❥✉❣❛② ❝❧❛ss ✐♥ G = Gal(F/Q)✳ ❚❤❡♥ t❤❡ s❡t SC = {p ✉♥r❛♠✐✜❡❞ ✐♥ F/Q : Frobp ∈ C} ❤❛s ❉✐r✐❝❤❧❡t ❞❡♥s✐t② |C|/|G|✳ ❈♦r♦❧❧❛r② ✸✳✶✾✳ ▲❡t f (X) ∈ Z[X] ❜❡ ♠♦♥✐❝ ❛♥❞ ✐rr❡❞✉❝✐❜❧❡✳ ❚❤❡♥ t❤❡ s❡t ♦❢ ♣r✐♠❡s p s✉❝❤ t❤❛t f (X) (mod p) ❢❛❝t♦r✐s❡s ✐♥t♦ ✐rr❡❞✉❝✐❜❧❡ ♣♦❧②♥♦♠✐❛❧s ♦❢ ❞❡❣r❡❡s d1 , .
Gal(f )| Pr♦♦❢✳ f (X) (mod p) ❤❛s ❛ r❡♣❡❛t❡❞ r♦♦t ✐♥ F¯ p ❢♦r ♦♥❧② ✜♥✐t❡❧② ♠❛♥② p✳ ❋♦r t❤❡ r❡st✱ Frobp ❛❝ts ❛s ❛♥ ❡❧❡♠❡♥t ♦❢ ❝②❝❧❡ t②♣❡ (d1 , . . , dn ) ✇❤❡r❡ t❤❡s❡ ❛r❡ t❤❡ ❞❡❣r❡❡s ♦❢ t❤❡ ✐rr❡❞✉❝✐❜❧❡ ❢❛❝t♦rs ♦❢ f (X) (mod p)✱ ❜② ❈♦r♦❧❧❛r② ✷✳✺ ❛♥❞ ✐ts ♣r♦♦❢✳ ❊①❛♠♣❧❡✳ ❙✉♣♣♦s❡ f (X) ✐s ❛♥ ✐rr❡❞✉❝✐❜❧❡ q✉✐♥t✐❝ ✇✐t❤ Gal(f ) = S5 ✳ ✸✹ L✲❙❡r✐❡s • ❚❤❡ s❡t ♦❢ ♣r✐♠❡s s✉❝❤ t❤❛t f (X) (mod p) ✐s ❛ ♣r♦❞✉❝t ♦❢ ❧✐♥❡❛r ❢❛❝t♦rs ❤❛s ❞❡♥s✐t② 1/120✳ • ❚❤❡ s❡t ♦❢ ♣r✐♠❡s s✉❝❤ t❤❛t f (X) (mod p) ❢❛❝t♦r✐s❡s ✐♥t♦ ❛ ❝✉❜✐❝ ❛♥❞ ❛ q✉❛❞r❛t✐❝ ❤❛s ❞❡♥s✐t② 1 20 1 |{❡❧❡♠❡♥ts ♦❢ t❤❡ ❢♦r♠ (··)(· · ·) ✐♥ S5 }| = = .
R♠❛❧❧②✱ s✉❜st✐t✉t✐♥❣ t❤✐s ✐♥t♦ t❤❡ ❛❜♦✈❡ ♣r♦❞✉❝t ❣✐✈❡s t❤❡ s❡r✐❡s ❡①♣r❡ss✐♦♥ ✭❆rt✐♥ L✲s❡r✐❡s✮ (1 + aP N (P )−s + aP 2 N (P )−2s + · · · ) L(ρ, s) = P aN N (N )−s = (0)=N ⊂OK N ✐❞❡❛❧ ❢♦r s♦♠❡ aN ∈ C✳ ◆♦t❡ t❤❛t ❣r♦✉♣✐♥❣ ✐❞❡❛❧s ✇✐t❤ ❡q✉❛❧ ♥♦r♠ ②✐❡❧❞s ❛♥ ❡①♣r❡ss✐♦♥ ❢♦r L(ρ, s) ❛s ❛♥ ♦r❞✐♥❛r② ❉✐r✐❝❤❧❡t s❡r✐❡s✳ ▲❡♠♠❛ ✸✳✶✸✳ ❚❤❡ L✲s❡r✐❡s ❡①♣r❡ss✐♦♥ ❢♦r L(ρ, s) ❛❣r❡❡s ✇✐t❤ t❤❡ ❊✉❧❡r ♣r♦❞✉❝t ♦♥ (s) > 1✱ ✇❤❡r❡ ❜♦t❤ ❝♦♥✈❡r❣❡ ❛❜s♦❧✉t❡❧② t♦ ❛♥ ❛♥❛❧②t✐❝ ❢✉♥❝t✐♦♥✳ ✸✵ L✲❙❡r✐❡s Pr♦♦❢✳ ■t s✉✣❝❡s t♦ ❝❤❡❝❦ t❤❛t t❤❡ ❞♦✉❜❧❡ s❡r✐❡s (1 + aP N (P )−s + aP 2 N (P )−2s + · · · ) P ❝♦♥✈❡r❣❡s ❛❜s♦❧✉t❡❧② ♦♥ (s) > 1 ✖ t❤✐s ❥✉st✐✜❡s ❜♦t❤ t❤❡ ❊✉❧❡r ♣r♦❞✉❝t ❛♥❞ t❤❡ s❡r✐❡s ❡①♣r❡ss✐♦♥s ♦♥ (s) > 1✱ t❤❡♥ t❤❡ ❛♥❛❧②t✐❝✐t② ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❡①♣r❡ss✐♦♥ ♦❢ L(ρ, s) ❛s ❛♥ ♦r❞✐♥❛r② ❉✐r✐❝❤❧❡t s❡r✐❡s ❜② Pr♦♣♦s✐t✐♦♥ ✸✳✷✳ ❚❤❡ ♣♦❧②♥♦♠✐❛❧ PP (ρ, T ) ❢❛❝t♦r✐s❡s ♦✈❡r C ❛s PP (ρ, T ) = (1 − λ1 T ) · · · (1 − λk T ) ✇✐t❤ |λi | = 1 ❛♥❞ k ≤ dim ρ✳ ❙♦ t❤❡ ❝♦❡✣❝✐❡♥ts ♦❢ 1 = PP (ρ, T ) 1 = 1 + aP T + aP 2 T 2 + · · · (1 − λ T ) i i ❛r❡ ❜♦✉♥❞❡❞ ✐♥ ❛❜s♦❧✉t❡ ✈❛❧✉❡ ❜② t❤♦s❡ ♦❢ 1 = (1 + T + T 2 + · · · )dim ρ .